


650V N-Channel Enhancement Mode Field Effect Transistor

FEATURES

- Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability

APPLICATIONS

- Switch Mode Power Supply (SMPS)
- Uninterruptible Power Supply (UPS)
- Power Factor Correction (PFC)

Device Marking and Package Information						
Device	Package	Marking				
ADM4N65F	TO-220F	ADM4N65F				
ADM4N65	TO-220	ADM4N65				
ADM4N65D	TO-251	ADM4N65D				
ADM4N65E	TO-252	ADM4N65E				

Absolute Maximum Ratings $T_C = 25^{\circ}C$, unless otherwise noted						
	Symbol					
Parameter		TO-220	TO-220F	TO-252	TO-251	Unit
Drain-Source Voltage (V _{GS} = 0V)	V_{DSS}	650			V	
Continuous Drain Current	I _D	4			Α	
Pulsed Drain Current (note1)	I _{DM}	14			А	
Gate-Source Voltage	V_{GSS}	±30		V		
Single Pulse Avalanche Energy (note2)	E _{AS}	80			mJ	
Avalanche Current (note1)	I _{AR}	4			А	
Repetitive Avalanche Energy (note1)	E _{AR}	48			mJ	
Power Dissipation (T _C = 25°C)	P_D	30 45		W		
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55~+150				°C

Thermal Resistance						
	Symbol	Value				
Parameter		TO-220F	TO-251	TO-252	TO-220	Unit
Thermal Resistance, Junction-to-Case	R _{thJC}	4.1		2.8		
Thermal Resistance, Junction-to-Ambient	R_{thJA}	62.5		60		°C/W

ADM4N65/F/D/E

Specifications T _J = 25°C, unl	ess otherw	vise noted				
Parameter	Symbol	Tart On a Petron	Value			
		Test Conditions	Min.	Тур.	Max.	Unit
Static					,	
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_D = 250\mu A$	650			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 650V, V_{GS} = 0V, T_{J} = 25^{\circ}C$			1	μΑ
Gate-Source Leakage	I _{GSS}	V_{GS} = $\pm 30V$			±100	nA
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} = = 250μA	3.0		4.0	V
Drain-Source On-Resistance (Note3)	R _{DS(on)}	V _{GS} = 10V, I _D = 1.75A		2.35	2.8	Ω
Dynamic	_					
Input Capacitance	C _{iss}	$V_{GS} = 0V$,		452		pF
Output Capacitance	C _{oss}	$V_{DS} = 0V,$ $V_{DS} = 25V,$ $f = 1.0MHz$		46.8		
Reverse Transfer Capacitance	C _{rss}	I = 1.UIVIHZ		5		
Gate Resistance	R_g	$V_{GS} = 0V, V_{DS} = 0V, f = 1.0MHz$		3		Ω
Total Gate Charge	Q_g			14.5		nC
Gate-Source Charge	Q_{gs}	$V_{DD} = 520V, I_{D} = 4A,$ $V_{GS} = 10V$		2		
Gate-Drain Charge	Q_{gd}	V _{GS} - 10V		7.5		
Turn-on Delay Time	t _{d(on)}			34		ns
Turn-on Rise Time	t _r	V_{DD} = 325V, I_{D} =4A,		5		
Turn-off Delay Time	t _{d(off)}	$R_G = 25 \Omega$		77		
Turn-off Fall Time	t _f			40		
Drain-Source Body Diode Characteris	stics					
Continuous Body Diode Current	Is				4	А
Pulsed Diode Forward Current	I _{SM}	T _C = 25 °C			12	
Body Diode Voltage	V_{SD}	$T_J = 25^{\circ}\text{C}, I_{SD} = 1.75\text{A}, V_{GS} = 0\text{V}$			1.4	V
Reverse Recovery Time	t _{rr}	$V_{GS} = 0V, I_{S} = 4A,$		285		ns
Reverse Recovery Charge	Q _{rr}	di _F /dt =100A /μs		1.75		μC

Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L = 10.0mH, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}C$
- 3. Pulse Test: Pulse width $\, \leqslant \,$ 300 μ s, Duty Cycle $\, \leqslant \,$ 1%

Typical Characteristics $T_J = 25^{\circ}$ C, unless otherwise noted

Figure 1. Output Characteristics (T_J = 25°C)

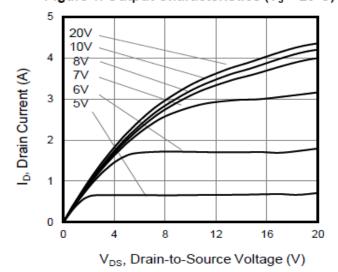


Figure 2. Body Diode Forward Voltage

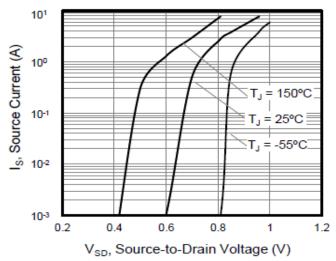


Figure 3. Drain Current vs. Temperature

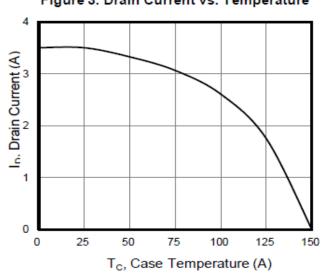


Figure 4. BV_{DSS} Variation vs. Temperature

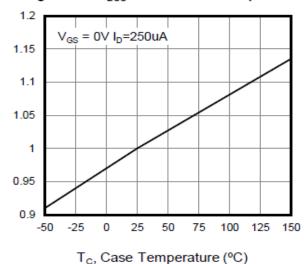


Figure 5. Transfer Characteristics

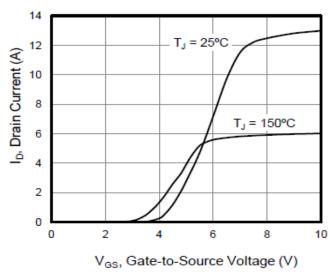
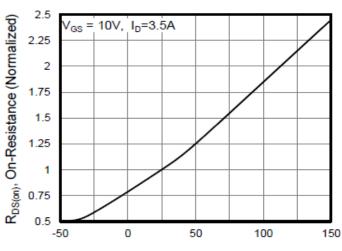



Figure 6. On-Resistance vs. Temperature

T_J, Junction Temperature (°C)

BV_{DSS} (Normalized)

Figure 7. Capacitance

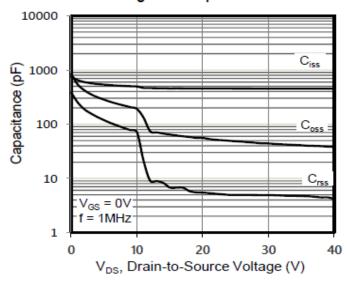


Figure 8. Gate Charge

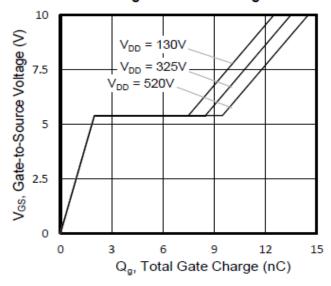


Figure 9. Transient Thermal Impedance

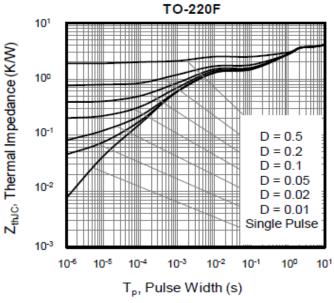


Figure 10. Transient Thermal Impedance TO-220, TO-251,TO-252

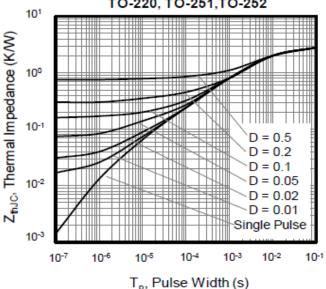


Figure A: Gate Charge Test Circuit and Waveform

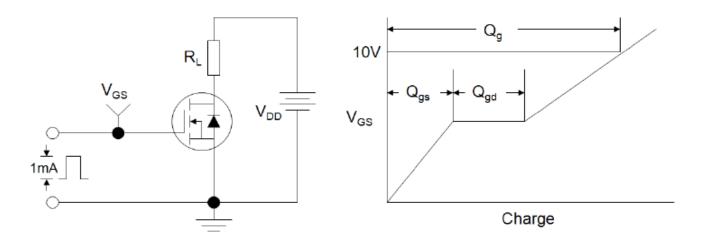
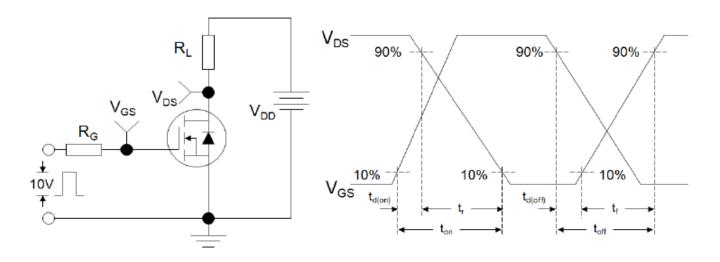
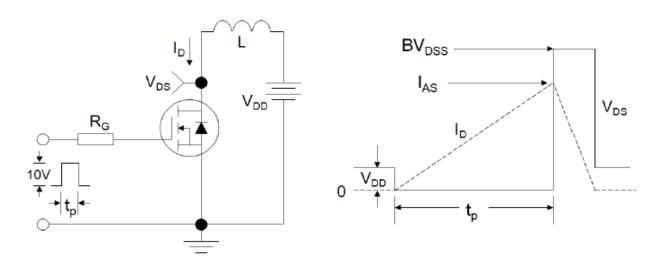
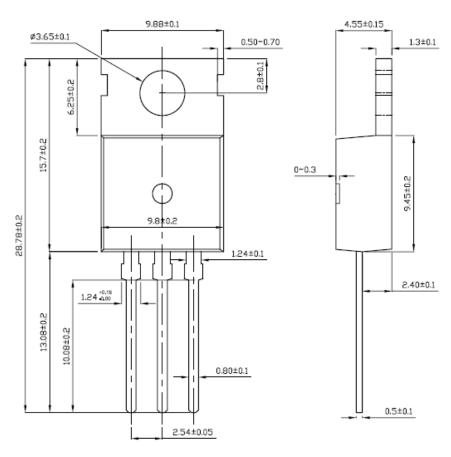
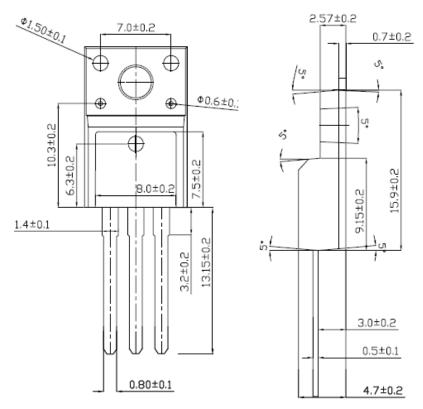


Figure B: Resistive Switching Test Circuit and Waveform

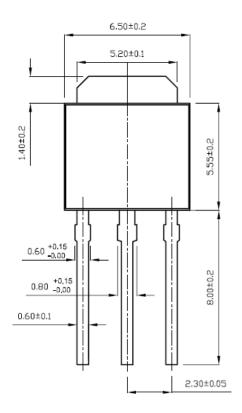



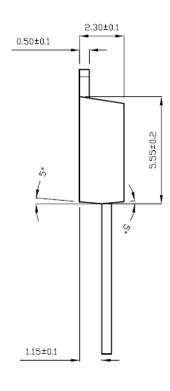

Figure C: Unclamped Inductive Switching Test Circuit and Waveform

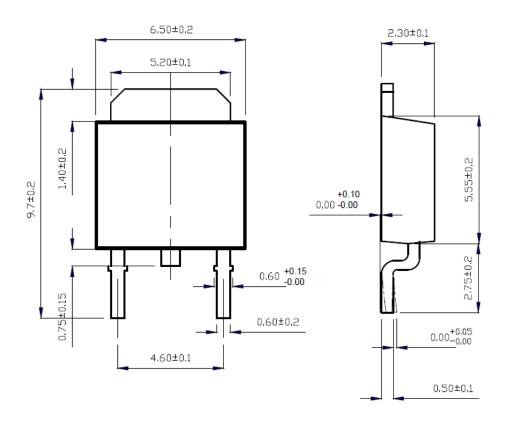


PACKAGE MECHANICAL DATA

TO-220 Package Dimension




TO-220F Package Dimension



TO-251 Package Dimension

TO-252 Package Dimension

ADM4N65/F/D/E

Notice

- 1. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any ADV products listed in this document, please confirm the latest product information with a ADV sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by ADV such as that disclosed through our website. (http://www.advsemi.com)
- 2. ADV has used reasonable care in compiling the information included in this document, but ADV assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 3. You should use the products described herein within the range specified by ADV, especially with respective the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. ADV shall have no liability for malfunctions or damages arising out of the use of ADV products beyond such specified ranges.
- 4. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. ADV makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or ADV products.
- 5. Although ADV endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a ADV product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 6. This document is provided for reference purposes only so that ADV customers may select the appropriate ADV products for their use. ADV neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of ADV or any third party with respect to the information in this document.
- 7. ADV shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 8. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from ADV.

8 / 8 www.advsemi.com Feb,2017 -Rev.1.01