
N-Channel Enhancement Mode Field Effect Transistor

PRODUCT SUMMARY

V _{DSS}	I _D	$R_{DS(ON)}$ (m Ω)
30V	80A	3.3 m Ω

Features:

- Low Gate Charge for Fast Switching Application
- Low Rds(ON) to Minimize Conductive Loss
- 100% EAS Guaranteed
- Optimized V(BR)DSS Ruggedness
- Green Device Available

Description:

The ADM80N03Z uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

Absolute Maximum Ratings (TA = 25°C unless otherwise specifed)

Symbol	Parameter	Ratings	Unit		
Common F	Common Ratings				
V _{DSS}	Drain-Source Voltage		30		
V _{GSS}	Gate-Source Voltage		±20	V	
TJ	Maximum Junction Temperature		150	°C	
T _{STG}	Storage Temperature Range		-55 to150	°C	
ls	Diode Continuous Forward Current T _C =25°C		80	Α	
Mounted o	n Large Heat Sink				
Ідм	300µs Pulse Drain Current Tested (2)	T _C =25°C, V _{GS} =10V	320	Α	
lσ	Continuous Drain Current (1)	T _C =25°C, V _{GS} =10V	80	Α	
		T _C =100°C V _{GS} =10V	52	Α	
Po	Maximum Power Dissipation	T _C =25°C	31.7	W	

Thermal Characteristics

Symbol	Parameter	Ratings	Unit
RthJC	Thermal resistance junction-case max (1)	3.94	°C/W
RthJA	Thermal resistance junction-ambient max (1)	30	°C/W

ADM80N03Z

Electrical Characteristics (TA=25°C Unless Otherwise Noted)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
On/off Charac	eteristics					
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V, I _{DS} =250uA	30			V
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 30V, V _{GS} =0V T _J =25°C			1.0	uA
VGS(th)	Gate Threshold Voltage	V _{DS} =V _{GS} , I _{DS} =250uA	1.0	1.6	2.5	V
Igss	Gate Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA
Process	D :: 0 0 111 D :: 1 (0)	V _{GS} = 10V, I _{DS} =30A		2.5	3.3	mΩ
Rds(on)	Drain-SourceOn-stateResistance(2)	V _{GS} = 4.5V, I _{DS} =20A		4.5	6.5	
Dynamic Chara	acteristics					
Ciss	Input Capacitance	V _{GS} =0V,		3500		
Coss	Output Capacitance	V _{DS} = 15V,		500		pF
Crss	Reverse Transfer Capacitance	Frequency=1.0MHz		431		
Switching Char	racteristics					•
td(ON)	Turn-on Delay Time(1)	V _{DD} =20V,		26		
tr	Turn-on Rise Time(1)	I _D = 30A, V _{GS} = 10V,		24		
td(OFF)	Turn-off Delay Time(1)	R _{GEN} =3 Ω		91		ns
tf	Turn-off Fall Time(1)			39		
Qg	Total Gate Charge(1)	V _{DS} =15V, V _{GS} = 10V,		38		
Qgs	Gate-Source Charge(1)	I _{DS} =30A		9		nC
Qgd	Gate-Drain Charge(1)			13		
Avalanche Cha	aracteristics					
		V _{DD} =24V,L=0.5mH ,V _{GS} =10				
EAS	Single Pulse Avalanche Energy (3)	$V,R_g=25\Omega$, IAS=30A	225		mJ	
		T _J =25°C				
Diode Charact	eristics					
Vsp	Diode Forward Voltage(2)	I _{SD} = 30A, V _{GS} = 0 ,T _J =25°C			1.2	V
trr	Reverse Recovery Time	1 -30 \ \d\ \d\ \d\ \d\ \-400 \\ \d\ \		42		ns
q rr	Reverse Recovery Charge	- I _{SD} =20A, dI _{SD} /dt=100A/μs		39		nC

NOTES:

- 1. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 2.The data tested by pulsed , pulse width $\,\leq\,\,300\text{us}$, duty cycle $\,\leq\,\,2\%$
- 3.The Min. value is 100% EAS tested guarantee.

Typical Performance Characteristics

Figure1: Output Characteristics

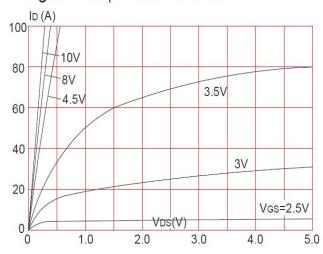


Figure 3:On-resistance vs. Drain Current

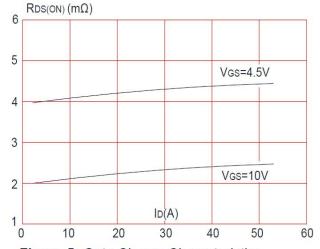


Figure 5: Gate Charge Characteristics

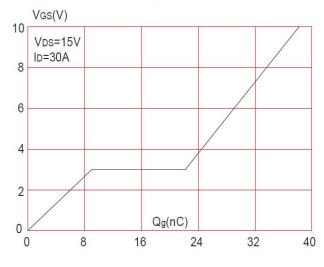


Figure 2: Typical Transfer Characteristics

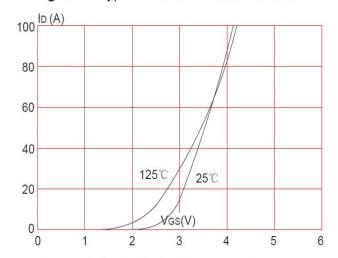


Figure 4: Body Diode Characteristics

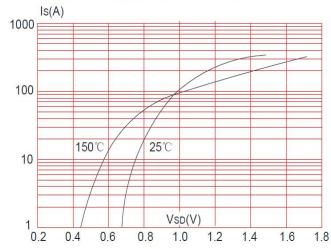
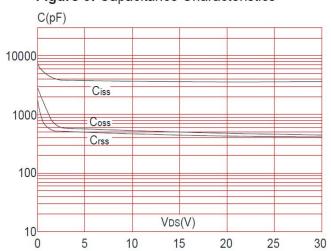
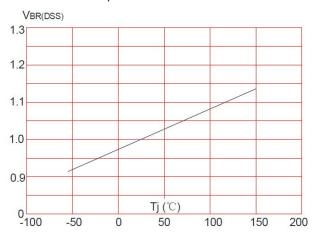
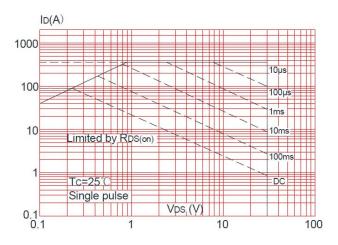
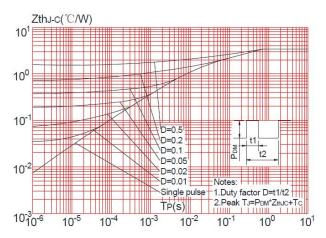



Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

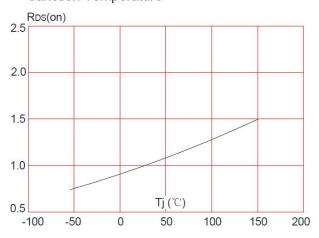

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

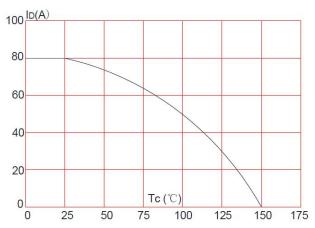


Figure 12: Switching Time Waveform

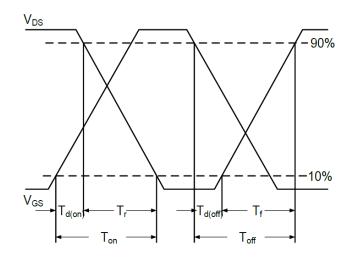
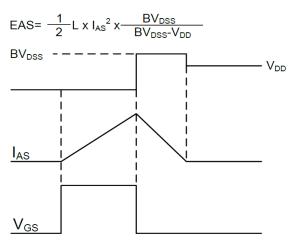
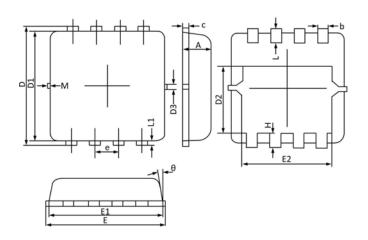




Figure 13: EAS Waveform

PDFN (3X3) Package Dimension

Correcte	Dimensions In		Dimensions In		
Symb ol	Millimeters		Inches		
Oi	Min.	Max.	Min.	Max.	
Α	0.700	0.800	0.028	0.031	
b	0.250	0.350	0.010	0.013	
С	0.100	0.250	0.004	0.009	
D	3.250	3.450	0.128	0.135	
D1	3.000	3.200	0.119	0.125	
D2	1.780	1.980	0.070	0.077	
D3	0.130	REF	0.005REF		
Е	3.200	3.400	0.126	0.133	
E1	3.000	3.200	0.119	0.125	
E2	2.390	2.590	0.094	0.102	
Н	0.300	0.500	0.011	0.019	
М	0.150REF		0.006REF		
е	0.650 TYP.		0.026 TYP.		
L	0.300	0.500	0.011	0.019	
L1	0.130REF		0.005REF		
θ	0°	12°	0°	12°	

Ordering information

Part number	Package	Marking	Packing	Quantity
ADM80N03Z	PDFN3*3	M80N03Z	Embossed tape	5000pcs

Notice

- 1. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any ADV products listed in this document, please confirm the latest product information with a ADV sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by ADV such as that disclosed through our website. (http://www.advsemi.com)
- 2. ADV has used reasonable care in compiling the information included in this document, but ADV assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 3. You should use the products described herein within the range specified by ADV, especially with respective the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. ADV shall have no liability for malfunctions or damages arising out of the use of ADV products beyond such specified ranges.
- 4. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. ADV makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or ADV products.
- 5. Although ADV endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a ADV product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 6. This document is provided for reference purposes only so that ADV customers may select the appropriate ADV products for their use. ADV neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of ADV or any third party with respect to the information in this document.
- 7. ADV shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 8. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from ADV.

6 / 6 www.advsemi.com Feb,2019 -Rev.1.01